Exam 1 October 2, 2003

Physics 241

- 1. Please print your name on the top edge of the op-scan sheet.
- 2. Use a #2 pencil to fill in your full name, your student identification number, your recitation division number, and finally the answers for problems 1-12.
- 3. One (both sides) 8 1/2" x 11" crib sheet is allowed. It must be hand-written.

Useful equations and constants:

$$F = \frac{1}{4\pi\varepsilon_{0}} \frac{q_{1}q_{2}}{r^{2}} \qquad \vec{E} = \vec{F}/q_{0} \qquad dE = \frac{1}{4\pi\varepsilon_{0}} \frac{dq}{r^{2}}$$

$$\vec{\tau} = \vec{p} \times \vec{E} \qquad \phi_{E} = \oint \vec{E} \cdot d\vec{A} \qquad \varepsilon_{0}\phi_{E} = q_{enclosed}$$

$$V_{b} - V_{a} = \frac{W_{ab}}{q_{0}} = -\int_{a}^{b} \vec{E} \cdot d\vec{l} \qquad V = \frac{1}{4\pi\varepsilon_{0}} \frac{q}{r}$$

$$U = Vq \qquad E = -\frac{dV}{dl} \qquad q = CV \qquad C = \varepsilon_{0} \frac{A}{d} \qquad C = \kappa C_{0}$$

$$R = \rho \frac{L}{A} \qquad V = iR \qquad P = iV \qquad U = \frac{1}{2}CV^{2}$$

$$U = \frac{1}{2} \frac{q^{2}}{C} \qquad V = \varepsilon(1 - e^{-t/RC}) \qquad i = \frac{\varepsilon}{R} e^{-t/RC} \qquad q = q_{0}e^{-t/RC}$$

$$k = \frac{1}{4\pi\varepsilon_{0}} = 9 \times 10^{9} \frac{N \cdot m}{C^{2}} \qquad \varepsilon_{0} = 8.85 \times 10^{-12} \frac{C^{2}}{N \cdot m}$$

$$e = 1.6 \times 10^{-19} \qquad m_{p} = 1.67 \times 10^{-27} kg$$

$$\mu \Rightarrow 10^{-6} \qquad n \Rightarrow 10^{-9} \qquad p \Rightarrow 10^{-12}$$
For $ax^{2} + bx + c = 0 \qquad x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

In the figure below, three charged particles lie in a straight line and are separated by a distance d. Charges q_1 and q_2 are held fixed. Charge q_3 is free to move but happens to be in equilibrium (no electrostatic force acts on it). If $q_2 = 1.5 \mu C$ find the value of q_1 .

- (a) $+3.0 \,\mu\text{C}$
- (b) $-3.0 \,\mu\text{C}$
- (c) $+6.0 \,\mu\text{C}$
- (d) -6.0 μC
- (e) none of the above

A proton and an electron form the two corners of an equilateral triangle of side length $d=4.0\times10^{-6}$ m. Assume that the proton is located at the origin and that the electron is on the positive x-axis. What is the magnitude and direction of their net electric field at the third corner?

- (a) 180 N/C, parallel to the x-axis
- (b) 45 N/C, 60 degrees with the x-axis
- (c) 90 N/C, perpendicular to the x-axis
- (d) 45 N/C, parallel to the x-axis
- (e) 90 N/C, parallel to the x-axis

3. An isolated conductor of arbitrary shape has a net charge Q_{net} =+35.5 ×10⁻⁶ C. Inside the conductor there is a cavity within which is a point charge $q = 10.9 \times 10^{-6}$ C. What is the charge q_{wall} on the cavity wall and the charge q_{out} on the outer surface of the conductor?

- (a) $q_{\text{woll}} = 0 \times 10^{-6} \text{ C}$ $q_{\text{out}} = -35.5 \times 10^{-6} \text{ C}$
- (b) $q_{wall} = -10.9 \times 10^{-6} \text{ C}$ $q_{out} = 46.4 \times 10^{-6} \text{ C}$
- (c) $q_{\text{wall}} = -10.9 \times 10^{-6} \text{ C}$ $q_{\text{out}} = 35.5 \times 10^{-6} \text{ C}$
- (d) $q_{\text{wall}} = -46.4 \times 10^{-6} \,\text{C}$ $q_{\text{out}} = 46.4 \times 10^{-6} \,\text{C}$
- (e) $q_{\text{wall}} = 0 \times 10^{-6} \text{ C}$ $q_{\text{out}} = 35.5 \times 10^{-6} \text{ C}$

4. Consider a spherical Gaussian surface of radius 1 m which surrounds two electric dipoles and two charges (one positive and one negative) as shown below. Here $q_1 = 7 \text{ nC}$, $q_2 = -4 \text{ nC}$, and $p_1 = p_2 = 10^{-10} \text{ C}$ m. What is the net electric flux through the Gaussian surface?

- (a) 339 Nm²/C
- (b) 7059 Nm²/C
- (c) 2325 Nm²/C
- (d) 561 Nm²/C
- (e) 4649 Nm²/C

5. An infinite line of charge produces a field $E= 4 \times 10^6$ N/C at a point P that is a distance of 2 m from the line. Calculate the linear charge density λ .

- (a) 0.89×10⁻³ C/m
- (b) 4.45×10⁻⁴ C/m
- (c) 8.94 C/m
- (d) 1.7×10⁻³ C/m
- (e) 8 C/m

6. Consider two infinite metal plates a distance d apart.

The plate on the left carries a uniform surface charge density of $+\sigma$, while the plate on the right carries a uniform surface charge density of $-\sigma$. What is the x-component of the electric field in regions I and II?

region I	region II
(a) 0	$\frac{\sigma}{\varepsilon_0}$
(b) 0	$\frac{\sigma}{2 \varepsilon_0}$
(c) 0	$\frac{2 \sigma}{\varepsilon_0}$
$(d) \frac{\sigma}{\varepsilon_0}$	0
(e) None of the above	

Find the difference in potential between the points A and B (i.e. find V(B) V(A)). Assume that the potential is zero at infinity.

- (a) $8.99 \times 10^9 \text{ V}$
- (b) 0 V
- (c) -1.8×10¹⁰ V
- (d) $-8.99 \times 10^9 \text{ V}$
- (e) $1.8 \times 10^{10} \text{ V}$

8. In the previous problem, what would be the work done by an external agent in moving a 4 C charge from the point A to the point B? (Assume that the potential is zero at infinity).

- (a) 0 J
- (b) $1.8 \times 10^{10} \,\text{J}$
- (c) -1.8 ×10¹⁰ J
- (d) $-7.2 \times 10^{10} \text{ J}$
- (e) $7.2 \times 10^{10} \,\text{J}$

9. Find the Electric Potential Energy of the configuration of point charges below. (Assume that the potential is zero at infinity).

- $3.6\times10^9\,\mathrm{J}$ (a)
- (b) $1.8\times10^{10}\,\mathrm{J}$
- -1.8×10¹⁰ J (c)
- $-3.6 \times 10^9 \text{ J}$ $5.4 \times 10^{10} \text{ J}$ (d)
- (e)

10. What is the charge on C₃ if the potential difference applied to the input terminals of the circuit below is V=9V?

Assume: C_1 =12 μ F, C_2 =5 μ F and C_3 =4 μ F.

- a) 29.1 μC
- b) 180 μC
- c) 45 µC
- d) 36 μC
- e) none of the above

- A parallel-plate capacitor whose capacitance C is 15 pF is charged by a battery so that the potential difference between the plates of the capacitor is V=9V. The charging battery is now disconnected and a porcelain slab (κ=6.50) is slipped in between the plates. What is the potential energy of the capacitor-slab device after the slab is put into place?
 - (a) $1.22 \times 10^{-9} \text{ J}$
 - (b) $6.08 \times 10^{-10} \text{ J}$
 - (c) 3.95×10^{-9} J
 - (d) $1.87 \times 10^{-10} \text{ J}$
 - (e) $9.35 \times 10^{-11} \text{ J}$

- Consider a parallel plate capacitor having plates of area A separated by a distance d, where the space between the plates is filled with a dielectric of dielectric constant κ . Assume that this capacitor has a capacitance of C. If I construct a new capacitor by doubling the plate area (so A' = 2A), doubling the plate separation (so A' = 2A), and doubling the dielectric constant (so A' = 2A), what is the capacitance C' of this new capacitor in terms of the old capacitance C?
 - (a) 8C
 - (b) 4C
 - (c) 2C
 - (d) C/4
 - (e) C/2

Exam 1 Fall 2003

- 1. D
- 2. E
- 3. B
- 4. A
- 5. B
- 6. A
- 7. C
- 8. D
- 9. C
- 10. A
- 11. E
- 12. C