Exam 2 PHYS-241 November 4, 2004

- 1.- Two 8 1/2" x 11" crib sheets are allowed. It must be of your own creation.
- 2.- Please print your name on the top edge of the op-scan sheet and sign it.
- 3.- Use a #2 pencil to fill in your full name, your student identification number, your recitation division number, and finally the answers for problems 1–12.

$$k = \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \frac{\text{C}^2}{\text{N} \cdot \text{m}^2}$$

$$\mu_0 = 4\pi \times 10^{-7} \frac{\text{N}}{\text{A}^2}$$

$$e = 1.602 \times 10^{-19} \text{ C}$$

$$c = 2.99792458 \times 10^8 \text{ m/s (speed of light)}$$

$$N_{\text{Avogadro}} = 6.022 \times 10^{23} \text{ (number of atoms in 12 g of}^{12} \text{ C})$$

$$m \Rightarrow 10^{-3} \quad \mu \Rightarrow 10^{-6} \quad n \Rightarrow 10^{-9} \quad p \Rightarrow 10^{-12} \quad f \Rightarrow 10^{-15}$$

$$k \Rightarrow 10^3 \quad \text{M} \Rightarrow 10^6 \quad \text{G} \Rightarrow 10^9 \quad \text{T} \Rightarrow 10^{12} \quad \text{P} \Rightarrow 10^{15}$$
For $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 1. Two copper wires have the same volume, but wire 2 is 10% longer than wire 1 (Hint: If the volume remains constant but the length increases, does the cross-sectional area change?). The ratio of the resistances of the two wires R_2/R_1 is:
- **A)** 1.2
- **B)** 1.1
- **C)** 0.82
- **D)** 0.91
- **E)** 1.0

- 2. A charged particle is moving horizontally westward with a velocity of 3.5×10^6 m/s in a region where there is a magnetic field of magnitude 5.6×10^{-5} T directed vertically downward. The particle experiences a force of 7.8×10^{-16} N northward. What is the charge on the particle?
- **A)** $+4.0 \times 10^{-18}$ C
- **B)** -4.0×10^{-18} C
- **C)** $+4.9 \times 10^{-5}$ C
- **D)** $-1.2 \times 10^{-14} \text{ C}$
- **E)** $+1.4 \times 10^{-11}$ C

3. The wire in the figure carries a current I and consists of a circular arc of radius R and central angle $\pi/2$ rad, and two straight sections whose extensions intersect the center C of the arc. What magnetic field \bar{B} does the current produce at C?

- $\mathbf{A)} \ \frac{\mu_o I}{R} \left(\frac{1}{\pi} + \frac{1}{8} \right)$
- **B)** $\frac{90\mu_{o}I}{4\pi R}$
- C) $\frac{\mu_o I}{4\pi R}$
- $\mathbf{D)} \ \frac{\mu_o I}{8R}$
- **E)** 0

4. A copper ring lies in the yz plane as shown. The magnet's long axis lies along the x axis. Induced current flows through the ring as indicated. The magnet

- A) must be moving away from the ring.
- B) must be moving toward the ring.
- C) must be accelerating away from the ring
- **D)** is not necessarily moving.
- E) must remain stationary to keep the current flowing.

- 5. The 6- μ F capacitor in the circuit shown in the figure is initially uncharged. Find the current through the 4- Ω resistor and the current through the 8- Ω resistor:
 - (i) immediately after the switch is closed,
 - (ii) a long time after the switch is closed,
 - (iii) Find the charge on the capacitor a long time after the switch is closed.

- **A)** (i) $I_{4\Omega} = I_{8\Omega} = 1 A$; (ii) $I_{4\Omega} = 3A$ and $I_{8\Omega} = 0 A$; (iii) $0 \mu C$
- **B)** (i) $I_{4\Omega} = I_{8\Omega} = 1A$; (ii) $I_{4\Omega} = I_{8\Omega} = 1A$; (iii) $48\mu C$
- C) (i) $I_{4\Omega} = 3A$, $I_{8\Omega} = 0A$; (ii) $I_{4\Omega} = 3A$ and $I_{8\Omega} = 0A$; (iii) $0\mu C$
- **D)** (i) $I_{4\Omega} = 3 A$, $I_{8\Omega} = 0 A$; (ii) $I_{4\Omega} = I_{8\Omega} = 1 A$; (iii) $48 \mu C$
- **E)** (i) $I_{4\Omega} = 0A$, $I_{8\Omega} = 3A$; (ii) $I_{4\Omega} = I_{8\Omega} = 3A$; (iii) $144\mu C$

- 6. The figure shows a conducting loop consisting of a half-circle of radius r = 0.20 m and three straight sections. The half-circle lies in a uniform magnetic field of \bar{B} that is directed out of the page; the field magnitude is given by $B = 4.0t^2 + 2.0t + 3.0$, with B in teslas and t in seconds. An ideal battery with emf $\varepsilon_{bat} = 2.0 \text{ V}$ is connected to the loop. The resistance of the loop is 2.0Ω .
 - (i) What is the magnitude of the emf ε_{ind} induced around the loop by field \vec{B} at t = 10 s?
 - (ii) What are the magnitude and direction of the current in the loop at t = 10 s?

- **A)** (i) 1.3 V; (ii) 0.63 A clockwise
- **B)** (i) 1.3 V; (ii) 0.63 A counterclockwise
- **C)** (i) 0 V; (ii) 0 A
- **D)** (i) 5.2 V; (ii) 1.6 A clockwise
- E) (i) 5.2 V; (ii) 1.6 A counterclockwise

- 7. Two long, straight, parallel wires 11 cm apart carry currents of equal magnitude I. They repel each other with a force per unit length of 4.2 nN/m. Are the currents "parallel" or "antiparallel"? What is the magnitude of the current I?
- A) antiparallel; I=0.096A
- **B)** parallel; I=0.0023A
- C) antiparallel; I=0.0023A
- D) parallel; I=0.048A
- E) antiparallel; I=0.048A

8. The figure shows a circular coil with 250 turns, an area A of 2.52 x 10^{-4} m², and a current of 100 μA . The coil is at rest in a uniform magnetic field of magnitude B = 0.85 T, with its magnetic dipole moment $\bar{\mu}$ initially aligned with \bar{B} . How much work would the torque applied by an external agent have to do on the coil to rotate it 90° from its initial orientation, so that $\bar{\mu}$ is perpendicular to \bar{B} and the coil is again at rest?

- **A)** -10.72 μJ
- **B)** -5.36 μJ
- **C)** 0 μJ
- **D)** 10.72 μJ
- **E)** 5.36 μJ

9. Two very long coaxial cylindrical conductors are shown in cross-section below. The inner cylinder has radius a = 2 cm and carries a total current of $I_1 = 1.2$ A in the positive z-direction (pointing out of the page). The outer cylinder has an inner radius b = 4 cm, outer radius c = 6 cm and carries a current of $I_2 = 2.4$ A in the negative z-direction (pointing into the page). You may assume that the current is uniformly distributed over the cross-sectional area of the conductors. What are the magnitude and direction of the magnetic field B at point P which lies on the P axis at P axis at

- **A)** 0*T*
- **B)** $9 \times 10^{-6} T$ in the negative x direction
- C) $9 \times 10^{-6} T$ in the positive x direction
- **D)** $3 \times 10^{-6} T$ in the negative x direction
- **E)** $3 \times 10^{-6} T$ in the positive x direction

10. In the circuit shown, the power dissipated in the $18-\Omega$ resistor is

- **A)** 0.15 kW
- **B)** 98 W
- **C)** 33 W
- **D)** 0.33 kW
- **E)** 47 W

- 11. A parallel-plate capacitor has square plates of side 12 cm and a separation of 6.0 mm. A dielectric slab of constant $\kappa = 2.0$ has the same area as the plates but has a thickness of 3.0 mm. What is the capacitance of this capacitor with the dielectric slab between its plates?
- **A)** 28 pF
- **B)** 21 pF
- **C)** 16 pF
- **D)** 37 pF
- **E)** 53 pF

- 12. An electric field of 3.0 kV/m is perpendicular to a magnetic field of 0.20 T. An electron moving in a direction perpendicular to both \vec{E} and \vec{B} is not deflected if it has a velocity of
- **A)** 6 km/s
- **B)** 9 km/s
- **C)** 12 km/s
- **D)** 15 km/s
- **E)** 6.7 m/s

Answer Key

- 1. A **2.** B
 - 3. D
 - 4. B
 - 5. D
 - 6. D
 - 7. E
 - 8. E
 - 9. E
 - 10. B
 - 11. A
 - 12. D