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CHAPTER 8

Computers, Coins, and Quanta:
Unexpected Outcomes of
Random Events

8.1. The Suggestive Power of Fun

Many years ago, I participated in an international conference devoted
to improving the teaching of science at all levels of instruction.
Although I now recall little of the numerous talks and heated dis-
cussions that the conference engendered, there was one event that I
have not forgotten. In his introductory remarks, an invited speaker,
noted for his compendious study of the life of Isaac Newton, starkly
announced that not once, in all the years that Newton engaged in his
physical researches, had he (Newton) ever had any “fun.” According
to the speaker, the pursuit of scientific knowledge for Newton was a
solemn and sacred undertaking which the word fun grotesquely
trivialized. Moreover, the speaker continued somewhat scornfully,
this is precisely how it should be; science is too serious a matter to be
pursued—or taught—with the idea of fun in mind... and the sooner
teachers grasped this point, the sooner they would be able to teach
science more effectively.

I was stunned. I am not a historian, although I have read enough
books about Newton to agree that “fun-loving” is not exactly the adjec-
tive to apply to a reclusive genius with tendencies toward paranoia.
On the other hand, as a scientist—one of very few at the conference
in question—I have also read Newton’s own writings. It is impossible
to read Newton’s Opticks, for example, and not sense the enormous
personal satisfaction and pleasure that its author must have experi-
enced in reflecting upon the deep philosophical problems posed by the
behavior of light and in designing and executing simple, yet incisive,
experiments to help unravel these mysteries of natural philosophy.
Perhaps fun may not be the appropriate word, but any conception
of science that ignores the intellectual delight of satisfying one’s
curiosity, overcoming challenges, and making discoveries has missed
a seminal attraction of science both in Newton’s time and our own.
Indeed, it is precisely this sense of exhilaration and fulfillment in the
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pursuit of understanding how the world—or a tiny part of it—works
that a teacher must communicate to students if they are to appreciate
science as something more than a collection of facts and formulas.

Newton was fascinated by the physical behavior of much of what he
encountered around him: how objects moved when pushed, how objects
fell when released, how objects cooled when heated, how fluids flowed,
and what happened to light when it passed through or around various
things, to cite but a few of Newton’s preoccupations. In the motions
and transformations of familiar physical objects, Newton found far-
reaching principles waiting to be revealed.

Science has evolved over the past three centuries in ways that
Newton could never have imagined, and the objects familiar to many
a physicist today now comprise those that can be seen only by power-
ful microscopes or with satellite-based telescopes or by means of some
other kind of expensive apparatus usually requiring the financial
support of one government agency or another. In some ways, that is
rather unfortunate, although seemingly necessary if the boundaries of
scientific knowledge are to expand, for it tends to breed an attitude
among at least some scientists and science editors not unlike the
attitude of the historian above. The remark of one anonymous wag in
the audience of a quantum mechanics conference I spoke at long ago
captured this frame of mind precisely. Paraphrasing physicist John A.
Wheeler’s cryptic assertion that “a phenomenon is not a phenomenon
until it is a measured phenomenon,” the wag blurted out, “a phe-
nomenon is not a phenomenon until it is a funded phenomenon!”
Scientists who have ever tried to publish in a premier research journal
without having a funding agency to acknowledge as evidence that the
submitted work was “serious” science (and not fun) will understand
the import of the wag’s observation.

I have been doing scientific research for over forty years. Much of
this research, as recounted in this book and other volumes noted in
the Preface, is “serious” science, i.e., part of a carefully planned
research agenda. However, a significant fraction of my work was not
part of any research plan at all, but undertaken on a whim, for amuse-
ment, or out of surprise at some unexpected turn of events. These
adventitious projects were often the ones that I enjoyed most and
from which I always learned something new and interesting. I cannot
believe that a true scientist, including even Newton, does not have fun.

This two-sided nature of scientific motivation—serious and playful—
is aptly expressed in Harvey Lemon’s vignette of the Nobel Prize-
winning American physicist, A. A. Michelson,” who, like Newton, was
a pioneer in the investigation of light:

When asked by practical men of affairs for reasons which would justify the
investment of large sums of money in researches in pure science, he was quite
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able to grasp their point of view and cite cogent reasons and examples whereby
industry and humanity could be seen to have direct benefits from such work.
But his own motive he expressed time and again to his associates in five short
words, “It is such good fun.”

In this chapter, I discuss a project that started as a computer game,
but evolved—unexpectedly—into tests of what is perhaps the most
fundamental characteristic of the quantum world: the intrinsically
unpredictable occurrence of individual quantum events.

8.2. To Switch or Not to Switch—That Is the
Question

I never heard of the so-called “Monty Hall” problem until a few years
ago when I first saw mention of it in a review’ of a newly published
book of mathematical oddities. Even then, having (by choice) no tele-
vision in my house, the association of the name with the host of a TV
game show (“Let’'s Make A Deal”) meant nothing to me. The problem
is easy enough to state, but its solution is counterintuitive in the
extreme. Indeed, I have read that, when first brought to the American
public’s attention by a columnist for a popular magazine,* it had driven
even professional mathematicians to distraction.®

There are three closed boxes. Inside one of them is a valuable cash
prize and inside each of the others is a banana. The player picks a box,
but before its content is revealed, the game master (who is aware of
what is inside each box) opens one that he knows contains a banana.
Now, the game master offers the player the following option: The
player may keep his or her original choice or (for a small fee in one
version of the game) choose the other unopened box. What should the
player do?

The nearly universal reply—and indeed the reply given by everyone
to whom I personally posed this problem—was that it cannot matter
which of the two options is selected. With but two choices remaining,
there is a 50% chance of winning in either case. (It would, therefore,
be ridiculous to pay to switch, respondents said.) This, however, is not
the case. Players double their chance of winning if they switch. Think
about that a while, before continuing.

How can one possibly double his chance of winning by choosing the
other of only two boxes? The argument is actually quite simple. Assum-
ing that there is an equal likelihood for any one of the three boxes to
contain the prize, a player will have a chance of 1/3 of winning if he
selects a box and keeps it. This means that there is a probability of
2/3 of not getting the prize on the first selection. However, if the
player switches, then 2/3 becomes the probability of winning, for,
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under the prevailing circumstances, the unopened box to which the
player switches must contain the prize if the originally chosen box
does not. Thus, the odds of winning are 958 as great if the player
switches.

The preceding reasoning (as well as other more formal arguments)
generally elicited a storm of protest from the ordinarily placid stu-
dents, colleagues, neighbors, and friends on whom I tried the problem.
Probability is a measure of present knowledge they all said; once the
game master opens a box, the odds of winning jump from 1/3 to 1/2
whether or not the player switches. The fallacy of thinking this way,
however, lies in ignoring the order in which events transpire, for
this order defines the conditions which determine the probability of
winning. The probability P, of winning by switching is a product of
two probabilities: (a) the probability P(A) that the player first picks a
box with a banana (event A) and (b) the probability P(BIA) that the
player next picks the box with a prize (event B) given that event A has
occurred®;

Piver = P(A)P(BJA). (8.1)

Under the rules of the game, the probability of initially selecting a
banana is P(A) = 2/3 and the conditional probability of selecting the
prize after the game master has revealed one of the banana-
containing boxes is P(BIA) = 1/1 (i.e., 100%). Hence, Pyyien = 2/3. If the
game master were to have revealed the content of one of the boxes
before the player made a first choice, then the probability of winning
would have been the same whether the player kept that choice or
switched. Order matters.

However, suppose—as one dissatisfied colleague argued—that the
player simply flipped an unbiased coin to determine the strategy:
heads (H) he keeps, tails (T) he switches. Clearly, in this case there
must be a 50% chance of winning the prize either way. That observa-
tion, in fact, is true, but it does not conflict with the previous conclu-
sion that the player is better off choosing to switch. The “coin-toss”
strategy, which underlies the intuitive but misguided reasoning of
most players, is again compounded of two distinct sets of probabilities.
If P, is the probability of winning when a coin toss determines
strategy, Pyeep and Py, are the original probabilities of winning by
keeping or switching one’s initial choice, and Py and Pr are the prob-
abilities (both 50%) of a fair coin landing H or T, then

P, toss — Iwmmu—imv.._.ﬁﬂ switch
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From Eq. (8.2), it again follows that P,y must be 2/3 and, therefore,
twice Py, if the overall probability of winning by the outcome of a
random process is to be 1/2.

To convince both myself and others that, however unexpected,
switching really doubles the odds of winning, I asked my son Chrig, a
high-school junior at the time, to program the game on a computer,
using a random-number algorithm to distribute the prize among the
boxes. In the first version of our program, created with the HyperTalk
language for the Macintosh, a player picks a box, and the computer,
again using the random-number generator, opens one of the two
remaining boxes. If the opened box contained the prize, then obviously
the player lost—but this event was not included in the dataset from
which statistics were compiled, for there had been no option of switch-
ing. In a second version of the program, the computer played the entire
game itself, executing many rounds of prize distribution and box
selection with the opening of a prize-containing box automatically
excluded.

The results of 20,000 games—10,000 each for the strategies of
keeping or switching—are summarized in Figure 8.1. The fraction of
times each box was assigned a prize was very close to 1/3, as was also
the fraction of times each box was selected by the “player.” The
strategy of keeping the original choice resulted in winning the prize
in 3359/10,000 = 33.59% of the games. By switching, however, the
fraction of wins jumped to a smashing 6639/10,000 = 66.39%.

What more can I say?

8.3. On the Run: How Random Is Random?

Actually, there is more to say. It was while programming and playing
the game that we noticed that the computer seemed to behave rather
oddly at times. Although, on average, each box was assigned the prize
in one-third of the total trials, in detail the computer occasionally
assigned the prize to the same box three or four or more times in
succession. Was there a defect in the program? Could it be that the
internal random-number generator was not generating random
numbers? Or were these outcomes to be expected even in the case of
a perfectly random selection process? Thus, began my interest in the
matter of “runs.”

Random events occur without any assignable cause. Emphasis here
is on “assignable,” for random occurrences do not represent a suspen-
sion of the laws of physics; rather, in the absence of sufficient
knowledge of initial conditions, one cannot predict their outcome indi-
vidually. Consider one of the classic examples of a random process:
coin tossing. Certainly, the coin is subject to Newton's laws; however,





