

# <u>Sensor production</u> <u>readiness</u>

G. Bolla, Purdue University for the USCMS FPIX group

PMG review 02/25/2005

2/23/2005



## <u>Outline</u>

### Sensor requirements Geometry Radiation hardness • Development Guard Rings P-stops • The final design (performance) Laser measurements (CCE) FNAL test beam results CERN test beam results Conclusions



## <u>Sensor requirements</u> Geometrv

- Pitches are set by the ROC design
  - 150 μm x 100 μm pitch
  - 100-200 x 100 bonding pitch
- Dimensions are set by the blade design
  - 7 different sensors are needed for a blade
    - <u>5 different geometries</u>





| Sensor<br>geometry | Active area<br>X [µm] | Active area<br>Y [µm] | Edge to<br>Edge X<br>[µm] | Edge to<br>Edge Υ<br>[μm] |
|--------------------|-----------------------|-----------------------|---------------------------|---------------------------|
| 2x1                | 16200                 | 8100                  | 18594                     | 10494                     |
| 3x2                | 24300                 | 16200                 | 26694                     | 18594                     |
| 4x2                | 32400                 | 16200                 | 34794                     | 18594                     |
| 5x2                | 40500                 | 8100                  | 42894                     | 18594                     |
| 5x1                | 40500                 | 16200                 | 42894                     | 10494                     |

PMG review, sensor production readiness

2/23/2005





## <u>HV operations</u> <u>Guard Rings</u>

Finalized in 1999 with the engineering run
 PSI-JHU-PURDUE-BTeV

- Two vendors
  - Sintef
  - CSEM (later Colibris later out of business)
- Vdep ~ 180-200 V
- 10+1 Guard-rings add ~1.2 mm on each edge of the sensor
  - Holds >1000V before irradiation
  - Holds >800V after 6 10<sup>14</sup>



#### Nucl.Instrum.Meth.A461:182-184,2001



2/23/2005



## HV operations

<u>p-stops</u>

- P-stops edges are the points with high electric field
  - Shapes and distances strongly affects the maximum HV reachable







#### Nucl.Instrum.Meth.A501:160-163,2003

2/23/2005



# F and FM design

2001: submission with Sintef with

- Only 2 design left for large sensors
  - PSI30 Honeywell (irradiated and bumped at PSI)
  - PSI43 DMILL (bumped at MCNC and IZM)
  - PSI46 ¼ µm (bumped at IZM and VTT)





- Assembly experience
- CCE measurements
- Test beam



## <u>P-stops geometry and</u> <u>CCE (Charge Collection Efficiency)</u>

 1064 nm laser (goes through more than 300 μm of Si)

- Beam size ~10 μm
- Scans in  $\geq 2 \mu m$  steps
- Technique allows:
  - One to one comparison on the CCE performance of the 2 design (F and FM).
  - Dependence on Vbias



Implanted n+ pixel (also metalized) ~98 µm square

P-stops ring 8  $\mu m$  wide with 12  $\mu m$  gaps

#### Metal grid on the p-side

Contact between the Al and the n+ implanted pixel





# direct comparison

### F design at 320 V

The Compact Muon Solenoid

### FM design at 320 V







### FM design at 250 V

### FM design at 350 V



The decision to move to a higher resistivity (90-100 V depletion on diodes versus the 180-200 V of the 2001 submission) allows for more over depletion to be applied and so better CCE (lower inefficiencies) in the corner regions.









## FNAL Test beam

### **Beam telescope**

•8 strip planes(4X + 4Y)
•1 plane = 2 ROC's = 2 x 128 ch
•Strips pitch : 50um



single cluster is used for tracking
alignment variables : theta, offset
track\_residual < 3um</li>





## FNAL Test beam

Months of data taking with the DMILL PSI43

 Unstable performance

 12/20/04 switched to ¼ µm PSI46v1

 Reliable operation and robust efficiency measurements
 No charge information: a binary chip

### **Pixel detector**

Sensor design : FM
4160 pixels/ROC
Chip : PSI46v1, 1x2 chip

→ 1 chip has 52 columns and 80 rows
→ 8.1 mm x 8.1 mm
→ No charge information

Pixel size : 150um(col) x 100um(row)





## <u>Data set</u>

### Not tilted

| run   | Bias<br>Volt. | Data<br>Size |
|-------|---------------|--------------|
| 2635* | -350          | 250k         |
| 2643  | -250          | 250k         |
| 2644  | -400          | 250k         |
| 2645  | -300          | 250k         |
| 2646  | -200          | 250k         |
| 2648  | -250          | 250k         |
| 2649* | -350          | 250k         |
| 2650* | -350          | 250k         |
| 2653* | -350          | 250k         |

### Tilt 20 degree

| run  | Bias<br>Volt. | Data<br>Size |
|------|---------------|--------------|
| 2663 | -350          | 250k         |
| 2665 | -300          | 250k         |
| 2666 | -250          | 250k         |
| 2667 | -200          | 250k         |
| 2668 | -400          | 250k         |
| 2669 | -350          | 250k         |

Runs with the \* have been combined to get a high statistic sample





### Number listed here for the 1M evts (4 runs combined)

| Cut                             | Number of events | System/Sensor efficiency                          |
|---------------------------------|------------------|---------------------------------------------------|
|                                 | ~ 1M             |                                                   |
| Single track from the telescope | 699299           | 30% have multiple tracks                          |
| Track quality                   | 483700           | 15% with single tracks have poor track resolution |
| Pointing to the pixel array     | 309534           | 18 % are pointing outside of the pixel array      |
| BAD TBM trailer                 | 306263           | A small percentage have DAQ troubles              |
| Find pixel hits                 | 304990           | 99.6 ± 0.3 %                                      |
| Trk-pixel residual              | 304022           | 99.3 ± 0.3 %                                      |

CMS <u>No tilt Efficiency: 99.3 ± 0.3 %</u>

The Compact Muon Solenoid





#### 100um (Row

Inefficiency is dominant at the corner of 4 pixelsConsistent with the laser results

2/23/2005



# CMS <u>Rotation: 0° vs 20°</u>

| Bias Voltage | # of Events | Good trk | Good hits | Efficiency |
|--------------|-------------|----------|-----------|------------|
| -200         | 250k        | 70348    | 68002     | 96.7 %     |
|              | 250k        | 74938    | 73005     | 97.4 %     |
| -250         | 250k        | 76221    | 75553     | 99.1 %     |
|              | 250k        | 75618    | 75013     | 99.2 %     |
| -300         | 250k        | 70868    | 70394     | 99.3 %     |
|              | 250k        | 71511    | 71046     | 99.3 %     |
| -350         | 1M          | 306263   | 304022    | 99.3 %     |
|              | 250k        | 76304    | 75820     | 99.4 %     |
| -400         | _250k       | 70370    | 69185     | 99.5 %     |
|              | 250k        | 73734    | 73310     | 99.4 %     |



## CMS Post irradiation: CERN

CERN test beam data from fall 2004 Different ROC PSI30 (Honeywell from late 90s) Different pitch 125μm x 125 μm Analog charge available Threshold-less Pre-bump irradiation at CERN (6 10<sup>14</sup>) Bumped at PSI (indium) Single die metallurgy Many un-bonded pixels Post irradiation efficiency measurements





#### Illumination



| Sensor | Bias Volt. | Dose               | # <b>of</b> |
|--------|------------|--------------------|-------------|
|        |            | 1 1                | events      |
| ~~~~   |            |                    |             |
| F      | -300       | Unirradiated       | 1424700     |
| FM     | -450       | 6 10 <sup>14</sup> | 1400000     |
| FM     | -600       | 6 10 <sup>14</sup> | 1040000     |

No un-irradiated FM design to be compared with the results from FNAL





### <u>measurements</u>





## <u>Other results</u>

- Signal to noise ratio of ~44 post 6 10<sup>14</sup> irradiation (~45 for the p-spray as a comparison)
- No evidences of micro-discharges up to 600 V on irradiated device
  - True also around un-bonded pixels





## <u>Conclusions</u>

- Sensors for the CMS FPIX project have been developed.
- The geometry is driven by the other components of the system
- High voltage operation are guaranteed according to the TDR specification
- The particle detection efficiency is > 99% before any irradiation and after 6x10<sup>14</sup> is still above 97 %
- The designed sensors are fully compatible with the goals of the project
- Daniela will present the results from the preproduction run