

Picosecond X-ray Detector for Synchrotrons

Jason Boomsma, Tony Clevenger, Dr.

Ultrafast Physics

- Time Domain: ≤10⁻¹² seconds (ps)
- Generally lasers/optical detectors

PURDUE UNIVERSITY

Uses

- X-ray wavelength corresponds to distance between atoms
- Look at changes in atomic structure as they occur

Synchrotrons

Circular particle accelerator

Project Overview

- Starting Point:
 - Previous work
 - Recreate results, then modify
- Fattinger and Grischkowsky
- Transmission lines
- Terahertz radiation

The Detector (Design)

- Gold on semiconductor with defects
- Coplanar transmission lines
- EM pulses

PURDUE

Ammeter for data

PURDUE The Detector (Design)

PURDUE The Detector (Design)

PURDUE The Detector (Design)

The Detector (Design)

- Aamer Mahmood, Birck Nanotechnology Laboratory
- Designs and packaging
- Gold on Si

PURDUE

PURDUE UNIVERSITY

The Amplifier

- Custom amplifier, ultralow noise
- Starting Point:
 - Sergei Savikhin's design
 - OP Amp AD745

The Amplifier

Met with Sergei Savikhin

PIIR

DUF

Tailored design to fit our needs

PURDUE UNIVERSITY

The Amplifier

- Met with Mark Smith
- Designed, ordered, and built PCB
- Tested amplifier with photodiode

Top Side

Bottom Side

• Goals:

- Practice working with laser

- Create setup for later use

• Test piece:

- Similar design on GaAs

- Larger gap sizes, shorter line lengths

PURDUE UNIVERSITY

PURDUE

- Procedure 1: Make it work
 - Hook up the detector correctly
 - Point the beams at the sample
 - Collect data using long time delay
- Procedure 2: Make it work well
 - Optimize beam locations
 - Search for peaks
 - Investigate times of interest

Issues

PUR

- Very noisy data
- Didn't find expected peak
- Found an unexpected peak
- It broke

DUE SITY Savikhin's Lab —Aligned Run 1

Pur

- Birck completed samples
- Marc Caffee, PRIME Laboratory
- Deep ion implantation
- Reduced carrier lifetime

• PRIME Lab Setup:

- Implantation:
 - How many protons?
- Radiation issues
 - Pulled samples out,
 - very radioactive
 - Stainless steel mount
 - was the cause

- Samples melted with high current (1 μ A)
- Decreased current to solve (100 nA)

- Back to Birck: Wire bonding
 - $-25 \,\mu m$ wires
 - 24 pin DIP package
- Circuit board needed for sample

- Requirements:
 - Holds power, amplifier, and detector
 - Input and output jacks
 - Sturdy

PUR

PURDUE

PURDUE

Summer Goals

- Get the detector built: Check
- Get the detector implanted: Check
- Test the detector: Savikhin's lab
 - Equipment training: Check
 - Tests...In process
- Test the detector at APS: Next Week

Closing Thoughts

- Design/Production went fairly smoothly
- Fast production schedule was a good experience
- Tests in Savikhin's lab very worthwhile