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 Overall Project Goal:
• Photoassociation of Li and Rb

 My REU Goals:
◦ Work on electronics to help control the dual-

species magneto-optical trap (MOT)
 Laser locking circuits
 Timing Controls
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 Using light to form 
molecules from 
atoms

J. M. Sage et al. “Optical Production 
of Ultracold Polar Molecules”



 Why LiRb?
◦ Polar molecule 
◦ More complicated than atoms

 Potential applications:
◦ Quantum computing

D. DeMille. “Quantum Computation with Trapped Polar 
Molecules”



 Magneto-Optical Trap
◦ Used to trap and cool 

atoms
 Requirements to trap 

atoms:
1. Velocity-dependent 

force
2. Position-dependent 

force



 Principle ideas:
◦ Photons carry momentum
◦ Atoms can absorb photons
◦ Conservation of momentum
◦ Doppler shift
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 Atom at rest:

 Atom moving towards the right:
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 Red-detune the laser from the 
transition frequency by 

 Slow moving atoms

 Fast moving atoms
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 Principle Ideas:
◦ Slow moving atoms
◦ Zeeman effect
◦ Selection rules



Zeeman Effect
 Used to shift atomic 

energy levels onto 
resonance

Slow Moving Atoms
 Too slow to 

Doppler shift laser 
onto resonance
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Selection Rules
 In a magnetic field, atoms preferentially 

absorb light depending on its polarization

University of Colorado. “Advanced Optics Lab: Laser 
Cooling and Trapping”



A. Mills. “Nonlinear Ground-state Pump-probe Spectroscopy in 
Ultracold Rubidium: Raman-coupled Dressed State 

Spectroscopy”
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 Lasers must be tuned and kept at specific 
frequencies

 Stabilizing lasers:
◦ Temperature control
◦ Current control
◦ Electronic feedback



Peak Locking

 Small capture 
range:
◦ Accurate 
◦ Sensitive to 

disturbances

Dichroic Atomic 
Vapor Laser Lock 
(DAVLL)

 Large capture 
range:
◦ Robust
◦ Tendency to drift
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 Idea: take the “derivative” of the Doppler-free 
saturated absorption signal
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Doppler-free saturated 
absorption
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Physical implementation of Doppler-free 
saturated absorption
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 Hyperfine Peaks  Crossover 
Resonances
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1. Apply a dither to the Doppler-free saturated 
absorption signal

2. Use a lock-in amplifier and low-pass filter to 
convert amplitude of dither on signal to voltage
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 Idea: in a magnetic field, atoms absorb light 
differently depending on its polarization
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A. Mills. “Nonlinear Ground-state Pump-probe Spectroscopy in 
Ultracold Rubidium: Raman-coupled Dressed State 

Spectroscopy”



 Want benefits of both peak locking and 
DAVLL schemes
◦ Accurate
◦ Robust

 Brute force approach

Peak 
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_ Error 
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 Have not yet had the chance to do extensive 
testing

 Appears  to be somewhat quirky:
◦ Does not yet lock as well as we had hoped

 Improvements:
◦ Tweak component values
◦ Adjust error signals
◦ Better method of combining signals



 Need method of controlling multiple acousto-
optic modulators for the dual-species MOT

 Interface with National Instruments data 
acquisition card



 AOMs are used for:
◦ Frequency shifting
◦ Fast shutters

RP Photonics “Acousto-optic Modulators”
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 My projects involved working on control 
mechanisms for the dual-species MOT
◦ Laser locking circuits
◦ AOM controller board
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