Modeling Subaru through the LSST Simulator

By Mary Ann Hodge, Murray State University

Advised by Professor Peterson

The Subaru Telescope 🕘 ELEARU TELESCOPE

♦Located at the top of Mauna Kea in Hawaii

 \diamond Finished construction in 1998

♦8.2m primary mirror

♦Instruments include Subaru Prime Focus Camera (Suprime-Cam)

The LSST

*"Large Synoptic Survey Telescope"
Will be located in northern Chile
Will start operations in 2019/2020
8.4m primary mirror
Optical Telescope

The LSST Image Simulator

♦The simulator samples sky data and uses Snell's Law to track photons through the atmosphere and telescope

♦The images produced reflect what the pictures taken with the completed telescope should look like

♦Finds errors in the system before the telescope is built, and helps our understanding of the atmosphere

Project

By making alterations to model another telescope that has already taken real images (Subaru), the simulator can be validated or improved

First Step – Creating Optics File

The optics file contains the list of surfaces, such as mirrors and lenses

 \diamond Replace LSST file with one for Subaru

Run raytrace, the part of the simulator that computes photon paths

 \diamond Use a program to show the photons

Name	Туре	Rad. of Curv.	Thickness	Semi- Diam	Conic
M1	mirror	30000	0.0	4100	-1.00835

Possible Causes for Error

- ♦ Switched negatives
- \diamond Incorrect surfaces
- ♦ Aspherical coefficients
- ♦ Glass indexes of refractions

Changes Due to ADC

Name	Rad. of Curv.	Thickness
L3E	-897.65	26
L4	0.0	14

L3E	-897.65	26
L4	-897.65	0
L4E	0.0	14

Aspherical Lens Formula

$$z(r) = \frac{r^2}{R\left(1 + \sqrt{1 - (1 + \kappa)\frac{r^2}{R^2}}\right)} + \alpha_1 r^2 + \alpha_2 r^4 + \alpha_3 r^6 + \cdots,$$

z=sag R=radius of curvature r=radius K=conic constant α=coefficients of terms with even powers

Aspheric Lens

```
\diamond Subaru – L2, L4E
\diamond LSST – M1, M2, M3, L2E
```

Name	6 th	8 th	
Subaru L2	8.363e-17	-2.038e-21	
Subaru L4E	5.389e-17	6.67e-21	

Name	6 th	7 th	8 th	9 th
Subaru L2	8.363e-17	0.0	-2.038e-21	1.338e-26
Subaru L4E	5.389e-17	0.0	6.67e-21	6.942e-23

Index of Refraction

- Silica indexes are the default for LSST surfaces
- ♦ Subaru is designed with 5 other types of glasses

The Sellmeier Equation

$$n^2(\lambda) = 1 + rac{B_1\lambda^2}{\lambda^2 - C_1} + rac{B_2\lambda^2}{\lambda^2 - C_2} + rac{B_3\lambda^2}{\lambda^2 - C_3},$$

n=index of refraction λ=wavelength B, C=coefficients

Acceptable Error

CCD

♦Subaru – 10 CCDs, LSST – 189 CCDS♦Changes focal plane layout

Name	xpos (μm)	ypos (μm)	x pixels	y pixels	
R00_S12 -254000 -212750		4000	4072		
Ponyo	-60000	-30000	2048	4096	

Detector Settings

♦Back bias voltage increased from 35 to 50V

 $\diamond Silicone$ layer increased to 200 μm

 $\diamond Pixel size increased from 10 to 15 \mu m$

Aperture radius maximum of 4100mm, minimum of 480mm

Reflectivity/Transmittance

Coating files determine which wavelengths pass through a surface

Spider

♦Size affects the light that reaches the mirror

Туре	Height	Thickness	X-Position	Y-Position
outerring	16100	4100	0	0
cross	16100	224	0	0
outerring	1550	4100	0	0
cross	1550	224	0	0

Control

Accounts for slight movement of surfaces in the telescope due to wind or other factors

Object	Displacement	Mean	Sigma	Distribution	Affected Surface
	Туре				Number
M1	phi, psi	0	6.28	uniform	0
M1	theta	2.47e-7	0	gaussian	0
M1	xdis, ydis, zdis	1.14e-3	0	gaussian	0
M1	z4, z5, z6, z7, z8, z9	4.18e-5	0	gaussian	0
M1	z10, z11, z12, z13, z14, z15	2.166e- 5	0	gaussian	0
M1	z16, z17, z18	1.4e-5	0	gaussian	0
M1	z19, z20, z21	1e-5	0	gaussian	0
camera	phi, psi	0	6.28	uniform	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
camera	theta	1.67e-5	0	gaussian	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
camera	xdis, ydis, zdis	3.4e-3	0	gaussian	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Final Results

Pixels

Pixels

Actual Subaru pictures have not yet been compared, but differences between simulated images are realistic.

Sources

- Miyazaki, S., et al. 2002, Subaru Prime Focus Camera Suprime-Cam, PASJ, 54, 833
- ♦ Satoshi Miyazaki, e-mail to John Peterson, Sept 2010
- Canon. Prime-Focus Corrector Lens System for the Subaru Telescope. http://www.canon.com/technology/approach/special/subaru.html
- ♦ Pruss, C., et al. 2008. *Testing Aspheres*. Optics and Photonics News 19(4):26
- Schott. Technical Information: *Refractive Index and Dispersion*. http://www.us.schott.com/advanced_optics/english/download/schott_tie-29_refractive_index_v3_jan_2007_us.pdf
- http://www.oharacorp.com/catalog.html
- Iye, M., et al. 2004, Current Performance and On-Going Improvements of the 8.2 m Subaru Telescope, PASJ, 56, 381
- ♦ Yukiko Kamata, Satoshi Miyazaki, Hidehiko Nakaya, Takeshi Go Tsuru, Shinichiro Takagi, Hiroshi Tsunemi, Emi Miyata, Masaharu Muramatsu, Hisanori Suzuki and Kazuhisa Miyaguchi, "Recent results of the fully-depleted backilluminated CCD developed by Hamamatsu", Proc. SPIE 6276, 62761U (2006); doi:10.1117/12.672628
- Julien Lozi, Frantz Martinache, and Olivier Guyon. "Phase-Induced Amplitude Apodization on Centrally Obscured Pupils: Design and First Laboratory Demonstration for the Subaru Telescope Pupil." ASP, 121, Nov. 2009, pp. 1232-1244.