Antiferromagnetic Transistors

Professor Leonid Rokhinson Kristofer Phleger-Schumacher Wan Zhong

Outline

Overview of the Project
Substrate Cleaning
Deposition
Accomplishments
What's Next

Antiferromagnetic Transistors

- A new twist on a classic
- Antiferromagnetic vs.
 Ferromagnetic
- Structure

Substrate Cleaning

Several iterations
before the final
process
Substrate
inconsistency

Acid Etching

This was only attempted once, and not revisited for obvious reasons.

Deposition

Objectives changed over time
 First revision: Optimize growth parameters

First Deposition

Used growth parameters from other users for other materials
Failed, no noticeable growth
Failure attributed to low fluence

Second Deposition

Used growth parameters from predecessor
Failed, no noticeable growth
Failure attributed to low fluence
Objective changed: achieve growth

Third Deposition

Used higher energy from laser, no attenuation
 Failed

Fourth Deposition

Abandoned custom substrate holder
Used Si substrates
Failed

Analysis of Failure

Large Spot Size = Low Fluence
Low Fluence = No Ablation
Difficulty of depositing MgO and Ni

Accomplishments

Codified, repeatable substrate cleaning process Identification of deposition problems Compilation of deposition parameters Creation/Testing of custom sample holder

What's Next

Successful deposition
Building transistors
Testing transistors

Review

Overview of the Project
Substrate Cleaning
Deposition
Accomplishments
What's Next

Questions?

