The Search for Dark Matter, and Xenon1TP

by Jamin Rager

Hillsdale College Assistant Prof. Rafael Lang Purdue University Dept. of Physics

Galaxy NGC 3198

Galaxy NGC 3198 Rotation Curves

3

Coma Cluster Visible Range 0.5°

http://bustard.phys.nd.edu/Phys171/lectures/dm.html

Jamin Rager – Purdue Department of Physics

Coma Cluster X-Ray Range 0.5°

http://bustard.phys.nd.edu/Phys171/lectures/dm.html

Jamin Rager – Purdue Department of Physics

Cluster 0024+1654 Lensing

http://bustard.phys.nd.edu/Phys171/lectures/dm.html

Jamin Rager – Purdue Department of Physics

Baryonic Dark Matter

• Baryon \rightarrow 3 quarks • protons & neutrons Massive Compact Halo Objects – MACHO white dwarfs, brown dwarfs, neutron stars, planets, black holes explains some gravitational lensing • Flat universe geometry \rightarrow universe at critical density ($\Omega_{tot} = 1$) \rightarrow 90% matter non $baryonic \rightarrow most DM non-baryonic$

Hot Dark Matter

- Hot = high energy/velocity (highly relativistic)
- Large mean free path
- Already observed neutrinos
 - only gravitational & weak interactions
 produced soon after Big Bang (before decoupling of light)

Problems with HDM

- Small fluctuations in ρ_{mass} smoothed out
 top-down formation? No, backwards!
 cosmic defects (cosmic strings)? No, can't explain temp. fluctuations in CMB
 not enough of it
- So, what then?

Cold Dark Matter

- Cold = slow, less energetic, smaller mean free path
 - small ρ_{mass} fluctuations possible (bottom up structure formation)
- Predicts temperature fluctuations in CMB
 WIMP's new, undiscovered particles
 massive (slow)
 "invisible" (no EM or strong interactions)

WIMP Candidates

 Super-symmetric particles neutralino – 10-10000 GeV, produced thermally early univ., right abundance Super-symmetry partners have same quantum numbers (sans spin, differ by $\frac{1}{2}$) universe cools, super-symmetry breaks, least massive super-symmetric particle(s) survive

Detection of WIMP's

Indirect methods

- synthesize them in colliders (LHC), look for apparent violation of conservation

- special telescopes (search for products of WIMP annihilations)
- Direct
 - cryogenic
 - scintillation

Our Work

• The search

- direct detection our method
- XENON10, XENON100, XENON1T liquid scintillators

calibration and prototype

Time Projection Chamber

Universität Münster

Steady State Heat Transfer

Sonduction:

 $\vec{q} = -k\vec{\nabla}T \iff \vec{\nabla}^2 T + \frac{\dot{e}}{k} = 0$ Convection: $\dot{Q} = -hA(T_s - T_A), \quad if \ h \approx const.$ Radiation:

$$Q_{1 \to 2} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1 - \epsilon_1}{A_1 \epsilon_1} + \frac{1}{A_1 F_{1 \to 2}} + \frac{1 - \epsilon_2}{A_2 \epsilon_2}}$$

Finite Element Analysis

FEA – Numerical solutions to PDE's
 Discretize domain – mesh of nodes
 Replace PDE with discrete algebraic system

∬_D W_iR = 0, i = 1,2,...,n
Find heat loss of Xe1TP – how much cooling power necessary?

18

Jamin Rager - Purdue Department of Physics

Mesh Convergence Study

2D Metal Box

Xe1TP Top Mount

21

Results

	Species	Heating Means	Heat Flow (W)
Metal Box	Xenon gas	c.f. (1.78" x 1")	17.6
XENON1TP	Xenon gas	c.f. (1.78" x 1")	9.8

Direct Detection

 Cryogenic (<100mK) - detect heat from collision w. atom in crystal absorber Scintillation - crystal ~DAMA/Nal – purported success - noble liquid ~XENON

XENON 100

- Goal spin-independent WIMP-nucleon scattering σ sensitivity of 2×10⁽⁻⁴⁵⁾ cm² for 100 GeV/c² WIMP.
 - low intrinsic radioactivity materials
 - passive and active shielding

~passive: 5 cm copper, 20 cm PE, 20 cm lead, 20 cm water or PE, entire shield rests on 25 cm thick slab PE, underground (equivalent 3700m water)

XENON 100

Active shield: 4cm LXe monitored by PMT

LXe high stopping power

2 phase (liquid,gas) scintillation in TPC

direct: LXe WIMP-atom interaction, S1
secondary: gas Xe, ionization e- from phase 1 → proportional scintillation, S2

S2/S2 a data filter

XENON 100 Artist Rendering

http://bustard.phys.nd.edu/Phys171/lectures/dm.html

XENON 100 – Top Array

http://bustard.phys.nd.edu/Phys171/lectures/dm.html

XENON 100

- TPC h = 30.5cm r = 15.3cm, 62kg target
 - 3D vertex reconstruction
 - ~ $\Delta t \text{ signals} \rightarrow drift time of e- \rightarrow z$ coordinate, 2mm accuracy
 - x & y from Monte Carlo simulation,
 3mm accuracy

Sources

- 1. http://astro.berkeley.edu/~mwhite/darkmatter/hdm.html
- 2. <u>http://bustard.phys.nd.edu/Phys171/lectures/dm.html</u>
- 3. <u>http://curious.astro.cornell.edu/question.php?number=689</u>
- 4. http://meetings.aps.org/Meeting/APR11/Event/145975
- 5. http://www.astro.caltech.edu/~george/ay21/eaa/eaa-hdm.pdf
- 6. http://www.pbs.org/wnet/hawking/strange/html/strange_hotcold.html
- 7. http://physics.aps.org/articles/v3/78
- 8. http://www.physik.uzh.ch/groups/groupbaudis/xenon/
- 9. http://www.sciencedirect.com/science/article/pii/S0927650512000059#gr1
- 10. http://wwwme.nchu.edu.tw/Enter/html/lab/lab516/Heat%20Transfer/chapter_2.pdf